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Abstract

In this paper regulated morphological operations are de"ned by extending the "tting interpretation of the ordinary
morphological operations. The de"ned operations have a controllable strictness, and so they are less sensitive to noise
and small intrusions or protrusions on the boundaries of shapes. The properties of the de"ned operations are described, and
the relations between them and some other non-linear operations are discussed. Given an existing morphological algorithm,
it is possible to try and improve the results obtained by it by using the regulated operations instead of the ordinary
operations with strictness that may be optimized according to some optimization criteria. Several examples of the proposed
approach are presented. ( 1999 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

Considering the "tting interpretation of the binary
morphological erosion and dilation operations, it is pos-
sible to observe that they are based on opposing strict
approaches. The binary dilation collects shifts for which
the kernel set intersects the object set without taking into
account what is the size of the intersection, whereas the
binary erosion collects shifts for which the kernel set is
completely contained within the object set without con-
sidering shifts for which some kernel elements are not
contained within the object set. As a result of these strict
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approaches, the ordinary morphological operations are
sensitive to noise and small intrusions or protrusions on
the boundary of shapes. In order to solve this problem,
various extensions to the ordinary morphological opera-
tions have been proposed. These extensions could be
classi"ed into two major groups: fuzzy morphological
operations [1, 2], and soft morphological operations [3, 4].

The fuzzy morphological operations extend the ordi-
nary morphological operations by using fuzzy sets, where
for fuzzy sets the union operation is replaced by a max-
imum operation, and the intersection operation is re-
placed by a minimum operation. When using a fuzzy
kernel set it is possible to give more weight to some
elements in it, and so to reduce the sensitivity to an
incomplete "t of the kernel set to the object set. It should
be noted that even though the kernel is fuzzy, the fuzzy
dilation and erosion still take extreme approaches. The
fuzzy dilation uses a maximum operation, whereas the
fuzzy erosion uses a minimum operation. The soft mor-
phological operations use a structuring system which is
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composed of two kernel sets: hard and soft, and an order
parameter. By determining the hard and soft kernel sets,
and the order parameter it is possible to control the
morphological operations, and thereby reduce their sen-
sitivity to noise. While the soft erosion and dilation
manage to maintain major properties of ordinary erosion
and dilation, the soft open and close are not idempotent
in general. The soft open and close are proven to be
idempotent only in a few cases of special kernel sets when
using special order parameters. As demonstrated later in
this paper, it is possible to compose the soft morphologi-
cal operations by using a combination of ordinary and
regulated morphological operations.

The relations between order-statistic "lters [5] and
ordinary morphological operations are described in
Ref. [6], where it is shown that the ordinary morphologi-
cal operations can be obtained as special cases of order-
statistic "lters. Based on this observation it is suggested
in Refs. [7, 8] to reduce the sensitivity of the ordinary
morphological operations to noise by using modi"ed
morphological operations that are based on order-statis-
tic "lters. This paper de"nes regulated morphological
operations, and shows how the "tting property of the
ordinary morphological operations is controlled in these
operations. The de"ned regulated morphological opera-
tions include: regulated erosion, regulated dilation, regu-
lated open, and regulated close. The properties of the
regulated morphological operations are discussed and it
is shown that they possess many of the properties of the
ordinary morphological operations. In particular, it is
shown that the regulated open and close are idempotent
for an arbitrary kernel and strictness parameter. Since the
regulated morphological operations possess many of the
properties of the ordinary morphological operations, it is
possible to use the regulated morphological operations in
existing algorithms that are based on morphological op-
erations in order to improve their performance, where the
strictness parameter of the regulated morphological op-
erations may be optimized according to some criteria.

The following sections discuss the proposed approach
in greater detail. Section 2 de"nes the regulated erosion
and dilation operations, studies their properties, and
discusses the relations between them. Section 3 deter-
mines the relations between the regulated morphological
operations and other operations. Section 4 de"nes and
studies the properties of compound regulated morpho-
logical operations. Some examples of regulating other
morphological operations based on the basic regulated
morphological operations are presented in Section 5. The
summary in Section 6 concludes the paper.

2. Basic regulated morphological operations

This section de"nes regulated morphological opera-
tions that have a controllable strictness. By using the

strictness parameter of the operations it is possible to
control the sensitivity of the operations to noise and
small intrusions or protrusions on the boundary of
shapes, and thereby prevent excessive dilation or erosion.
The properties of the regulated morphological opera-
tions are discussed, and it is shown that the ordi-
nary morphological operations may be obtained as
a special case of the regulated operations. Finally the
relations between the regulated erosion and dilation are
discussed.

2.1. Regulated dilation

Given two sets A, BLZN, the morphological dilation
of A by B is de"ned [9] by

A=B,Mx D&a3A, b3B :x"a#bN"Z
a|A

(B)
a

(1)

where (B)
a
is a shift of B by a de"ned by: (B)

a
,Mx D&b3B:

x"a#bN. When A is a set of binary image pixels, and
B is a set of binary kernel pixels, the dilation of A by
B results in a dilation of the shapes in A (provided that
the origin pixel belongs to the kernel B). The dilation
operation may be interpreted in various ways. In particu-
lar, the dilation of A by B may be obtained as the union
of all the possible shifts for which the re#ected and shifted
B intersects A. That is

A=B"Mx D (AW(Bx )
x
)O0N (2)

where Bx is the re#ection of B given by Bx ,Mx D&b3B:
x"!bN. As could be noted, the re#ection of B in Z2 is
equivalent to its rotation by 1803. By using the "tting
interpretation of dilation (2), the morphological dilation
of A by B can be extended by combining the size of
the intersection into the dilation process. In that sense,
a given shift is included in the dilation of A only if the
intersection between A and the re#ected and shifted B is
big enough. The obtained advantage of the regulated
dilation is the prevention of excessive dilation caused by
small intersections with the object set.

De5nition 1. The regulated dilation of A by B with a
strictness of s is de"ned by:

A s=B,Mx Dd(AW(Bx )
x
)*sN;

s3[1, min(dA, dB)] (3)

where the symbol d denotes the cardinality of a set.
It should be noted that since d(AW(Bx )

x
))

min(dA, dB) for every x, the strictness s is bounded by
min(dA, dB).

Fig. 1 demonstrates the "tting interpretation of the
ordinary and the regulated dilation. Figs 1a and b pres-
ents the original shape and the kernel set respectively,
where the black square indicates the origin of the kernel.
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Fig. 1. The "tting interpretation of the ordinary and the regulated dilation. (a) The original shape, (b) the kernel set, (c) the result of an
ordinary dilation obtained as the union of all the possible shifts of the re#ected kernel for which the intersection with the original shape is
not empty, (d) the result of a regulated dilation with a strictness of two, obtained as the union of all the possible shifts of the re#ected
kernel for which the size of the intersection with the original shape is greater than or equal to two. The elements that were added by the
dilation operations are marked in light gray. As can be observed, the result obtained by the regulated dilation is smaller than the result
obtained by the ordinary dilation.

Fig. 1c presents the result of an ordinary dilation ob-
tained as the union of all the possible shifts of the re#ec-
ted kernel for which the size of the intersection with the
original shape is greater or equal to one. Fig. 1d presents
the result of a regulated dilation with a strictness of two,
obtained as the union of all the possible shifts of the
re#ected kernel for which the size of the intersection with
the original shape is greater or equal to two. The ele-
ments that were added by the dilation are marked in
these "gures in light gray. As can be observed, the result
obtained by the regulated dilation is smaller than the
result obtained by the ordinary dilation, since in the
regulated dilation the kernel has to penetrate deeper into
the shape in order to add an element to the dilated shape.

Proposition 2. ¹he regulated dilation is decreasing with
respect to the strictness s:

A s1=B-A s2=B8s1*s2 (4)

=hen s is minimal, the regulated dilation results in the
ordinary dilation:

A 1=B"A=B (5)

Proof. We only prove the "rst part of the proposition.
The second part results directly from the de"nition of the
regulated dilation. Assume "rst that s1*s2. Therefore,
by using the de"nition of the regulated dilation, we get
that d(AW(Bx )

x
)*s1*s2 for all x3A=s1 B, and so

x3A =s2 B. However, there may exist x3A =s2 B such that
s1'd(AW(Bx )

x
)*s2, and so xNA =s1 B. Assume now that

A=s1 BLA=s2 B. Therefore, there exists x3A =s2 B such

that xNA =s1 B. Hence, for that x we get that s2)
d(AW(Bx )

x
)(s1 and so s2)s1. K

Corollary 3. ¹he regulated dilation results in a subset of
the ordinary dilation:

A s=B-A=B (6)

Proposition 4. ¹he regulated dilation is commutative, in-
creasing with respect to the ,rst and the second arguments,
and translation invariant:

A s=B"B s=A , (7)

A-BNA s=K-B s= K , (8)

B-D NA s= B-A s=D, (9)

(A)
x

s=B"(A s= B)
x
, (10)

A s= (B)
x
"(A s= B)

x
. (11)

Proof. The proofs of these properties result directly from
the regulated dilation de"nition. Consider for example
the proof of Eq. (7). Based on the de"nition of the regu-
lated dilation, it is necessary to show that d(AW(Bx )

x
)"

d(BW(Ax )
x
). By developing the left side of this equation

we get d(AW(Bx )
x
)"dMa3A D&b3B: a"!b#xN"

dMb3B D&a3A: b"!a#xN"d (BW(Ax )
x
). K

Proposition 5. ¹he regulated dilation of a union (inter-
section) of sets is bigger (smaller) or equal to the union
(intersection) of the regulated dilation of the individual sets:

(AXB) s=K.(A s=K)X(B s=K) , (12)

(AWB) s=K-(A s=K)W(B s=K) . (13)
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Fig. 2. The "tting interpretation of the ordinary and the regulated erosion: (a) The original shape, (b) the kernel set, (c) the result of an
ordinary erosion obtained as the union of all the possible shifts of the kernel that are contained completely within the original shape,
(d) the result of a regulated erosion with a strictness of two obtained as the union of all the possible shifts of the kernel for which the size
of the intersection with the background of the original shape is less than two. The elements that were removed by the erosion operations
are marked in light gray. As can be observed, the result obtained by the regulated erosion is larger than the result obtained by the
ordinary erosion.

Proof. Consider the proof of Eq. (12). Since AXB.A
and AXB.B, by using Eq. (8) we get that
(AXB) =s K.A =s K and (AXB) =s K.B=s K. There-
fore, (AXB)=s K.(A=s K)X(B =s K). The proof of
Eq. (13) may be obtained similarly. K

It should be noted that an equality in Eq. (12) is always
obtained when s"1.

2.2. Regulated erosion

Given two sets A, BLZN, the morphological erosion
of A by B is de"ned [9] by

A>B,Mx D∀b3B &a3A: x"a!bN"Y
b|B

(A)
~b

(14)

When A is a set of binary image pixels, and B is a set of
binary kernel pixels, the erosion of A by B results in an
erosion of the shapes in A (provided that the origin pixel
belongs to the kernel B). It is possible to show [9] that
dilation and erosion are dual, so that the morphological
erosion of A by B can be obtained by dilating the comp-
lement of A with the re#ected B, and then taking the
complement of the result. That is

A>B"(A#=Bx )# (15)

where A# denotes the complement of A de"ned by: A#,

Mx DxNAN. The erosion operation may be interpreted in
various ways. In particular, the erosion of A by B may be
obtained as the union of all the possible shifts for which
the shifted B is contained completely within A. That is

A>B"Mx D (A#W(B)
x
)"0N . (16)

By using Eq. (16) the morphological erosion of A by
B can be extended by including in the erosion of A

shifts for which the intersection between A# and
the shifted B is small enough. The obtained advantage
of the regulated erosion is the prevention of excessive
erosion caused by small intersections with the back-
ground set.

De5nition 6. The regulated erosion of A by B with
a strictness of s is de"ned by:

A s>B,Mx Dd(A#W(B)
x
)(sN, s3[1, dB] (17)

where it is assumed that dA(R.
It should be noted that since it is assumed that

dA(R then d(A#W (B)
x
))dB for every x, and so

the strictness s is bounded by dB.
Fig. 2 demonstrates the "tting interpretation of the

ordinary and the regulated erosion. Fig. 2a and b pres-
ents the original shape and the kernel set respectively,
where the black square indicates the origin of the kernel.
Fig. 2c presents the result of an ordinary erosion ob-
tained as the union of all the possible shifts of the kernel
that are contained completely within the original shape.
Fig. 2d presents the result of a regulated erosion with
a strictness of two obtained as the union of all the
possible shifts of the kernel for which the size of the
intersection with the background of the original shape is
less than two. The elements that were removed by the
erosion are marked in these "gures in light gray. As can
be observed, the result obtained by the regulated erosion
is larger than the result obtained by the ordinary erosion,
since in the regulated erosion the kernel could get into
more pixels in order to prevent their removal from the
eroded shape.

Proposition 7. ¹he regulated dilation and erosion are dual
in the same sense that exists for the ordinary dilation and
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erosion:

A s>B"(A# s=Bx )# (18)

Proof. By developing the right side of the proposition
according to the regulated dilation de"nition we get
(A# =s Bx )#"Mx Dd(A#W (B)

x
)*sN#"Mx Dd(A#W (B)

x
)

(sN"A >s B. K

Proposition 8. ¹he regulated erosion is increasing with
respect to the strictness s:

A s1>B-A s2>B8s1)s2 (19)

=hen s is minimal, the regulated erosion results in the
ordinary erosion:

A 1>B"A>B (20)

Proof. By using Eq. (4) we get that A# =s2 Bx-A# =s1 Bx
8s2*s1. Therefore, (A#=s2 Bx )#.(A#=s1 Bx )#8s2*s1,
and so by using the duality proposition of the regulated
erosion and dilation we get that A>s2 B.A>s1 B8

s2*s1. The proof of the second part results directly from
the de"nition of the regulated erosion. K

Corollary 9. ¹he regulated erosion results in a superset of
the ordinary erosion:

A s>B.A>B . (21)

Proposition 10. ¹he regulated erosion is increasing with
respect to the ,rst argument, decreasing with respect to the
second argument, and translation invariant:

A-BNA s>K-B s> K , (22)

B-DNA s>B.A s>D , (23)

(A)
x

s>B"(A s> B)
x
, (24)

A s> (B)
x
"(A s> B)

~x
. (25)

Proof. The proofs of these properties result directly from
the regulated erosion de"nition. Consider for example
the proof of Eq. (22). Since A-BNA#.B#, it follows
that d(A#W (K)

x
)*d(B#W(K)

x
), and so Mx Dd(A#W(K)

x
)

(sN-Mx Dd(B#W(K)
x
)(sN. Therefore, according to

the de"nition of the regulated erosion: A s> K-

B
s>K. K

Proposition 11. ¹he regulated erosion of a union (intersec-
tion) of sets is bigger (smaller) or equal to the union (inter-
section) of the regulated erosion of the individual sets:

(AXB) s>K.(A s>K)X(B s>K) , (26)

(AWB) s>K-(A s>K)W(B s>K) . (27)

Proof. Consider the proof of Eq. (26). Since AXB.A
and AXB.B, by using Eq. (22) we get that (AXB)
>s K.A >s K and (AXB) >s K.B >s K. Therefore,
(AXB) >s K.(A >s K)X(B >s K). The proof of Eq. (27)
may be obtained similarly. K

It should be noted that an equality is always obtained
in Eq. (27) when s"1.

2.3. Relations between the regulated erosion and dilation

As stated earlier the regulated erosion and dilation are
dual in the same sense that exists for ordinary mor-
phological operations. That is, the regulated erosion may
be obtained from the regulated dilation when dilating the
complement of the set (the background) with the re#ected
kernel and then taking the complement of the result. In
the rest of this section a more basic relation between the
regulated erosion and dilation is developed.

The regulated dilation of A by B may be interpreted as
the union of all the possible shifts for which the intersec-
tion between A and the re#ected and shifted B is big
enough. The following proposition states that the same
interpretation may be applied to the regulated erosion
when using the re#ection of the set B and the complement
of the strictness s.

De5nition 12. The complement of the strictness s relative
to the set B is de"ned by

s
B
,dB!s#1 . (28)

Lemma 13. ¹he regulated erosion of A by B with a strict-
ness of s may be obtained by

A s>B"Mx Dd(AW(B)
x
)*s

B
N, s3[1, dB] . (29)

Proof. By developing the left side of the lemma accord-
ing to the regulated erosion de"nition, we get
A >s B"Mx Dd(A#W (B)

x
)(sN"Mx Dd(AW (B)

x
)*dB

!s#1N"Mx Dd(AW(B)
x
)*s

B
N. K

Proposition 14. ¹he regulated dilation and erosion may be
obtained from each other by re-ecting the kernel set and
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Fig. 3. Demonstration of the regulated dilation and erosion operations. (a) The original shape, (b)}(j) the results obtained by a regulated
dilation with a strictness of 1}9, respectively. The kernel that is used in this example is a 3]3 square, with the origin at its center. Since
the kernel used in this example is invariant under re#ection, these results are identical to those obtained by a regulated erosion with
a strictness of 9}1, respectively. The elements that were removed from the original shape are marked in light gray.

complementing the strictness relative to the kernel set:

A s=B"A sB>Bx , (30)

A s>B"A sB=Bx , (31)

where s3[1, dB].

Proof. Results directly from Eq. (29) when using the fact
that the complement of the strictness s

B
relative to B is s.

K

Corollary 15. =hen B is invariant under re-ection (that
is B"Bx ), the regulated dilation and erosion of A by
B give identical results when using a strictness of: s"
(dB#1)/2.

Following Proposition 14, and the fact that the regu-
lated dilation (erosion) is decreasing (increasing) with
respect to the strictness s, it is possible to observe that the
regulated dilation (erosion) is turned into erosion (dila-
tion) when increasing the strictness s (assuming that the
kernel is invariant under re#ection). That is, a regulated
dilation (erosion) which is too strict is turned into erosion
(dilation). Therefore, it is possible to conclude that the
regulated dilation and erosion operations are essentially
the same, and di!er only by the degree of strictness and
by a re#ection of the kernel.

Fig. 3 presents an example of the regulated dilation.
Fig. 3a presents the original image, and Fig. 3b}j presents
the results obtained by a regulated dilation with a strict-
ness of 1}9, respectively. The kernel used in this example

is a 3]3 square with the origin at its center. The light
gray elements in the resulting images represent elements
that were removed from the original image. Since the
kernel in that example is invariant under re#ection, the
presented results are also the results obtained by a regu-
lated erosion with a strictness of 9}1, respectively. As
could be observed, while by using ordinary morphologi-
cal operations it is possible to obtain only the extreme
ends of the sequence in Fig. 3 (Fig. 3b and j), by using
regulated morphological operations it is possible to ob-
tain any part of the sequence by selecting the required
strictness.

Based on Eqs. (30) and (31), and the fact that the
regulated dilation is commutative, it is possible to con-
struct a proposition concerning the exchange between
the arguments of a regulated erosion operation.

Proposition 16. It is possible to exchange the arguments of
a regulated erosion operation provided that the arguments
are re-ected, and that the strictness is updated:

A s>B"Bx
dA!dB#s

> Ax (32)

where s3[1, dB].

Proof. By developing the left side of the proposition
according to the regulated duality proposition, and using
the fact that the regulated dilation is commutative, we get

A >s B " A sB= Bx " Bx
dB!s#1

= A " Bx
dA!(dB!s#1)#1

=

Ax"Bx
dA!dB#s

= Ax . K
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2.4. Extensive regulated morphological operations

As was demonstrated, the regulated dilation and ero-
sion operations change their operation from dilation to
erosion (or vice versa) when changing their strictness.
Therefore, for an arbitrary strictness, the regulated dila-
tion (erosion) is not necessarily extensive (anti-extensive),
even if the origin belongs to the kernel set. An extensivity
(anti-extensivity) property for dilation (erosion) may be
desired when combining the basic regulated operations
in order to generate compound operations such as open
and close. In this section, an extensive regulated dilation
and an anti-extensive regulated erosion operations are
de"ned based on the regulated morphological opera-
tions.

De5nition 17. The extensive regulated dilation of A by
B with a strictness of s is de"ned by

A s=B,(A s=B)XA; s3[1, min(dA, dB)] (33)

Since in this de"nition the result of the regulated dilation
is uni"ed with the original set, the de"ned operation is
necessarily extensive (for an arbitrary kernel and strict-
ness).

Proposition 18. ¹he extensive regulated dilation is de-
creasing with respect to the strictness s:

A s1=B-A s2=B8s1*s2 (34)

=hen s is minimal, the extensive regulated dilation results
in an ordinary dilation:

A 1=B"A= B (35)

Proof. We only prove the "rst part of the proposition.
The second part results directly from the de"nition of the
extensive regulated dilation. Assume "rst that s1*s2.
Thus, by using Eq. (4), we get that (A =s1 B)-(A=s2 B).
Therefore, (A =s1 B)XA-(A=s2 B)XA and so A=s1B
-A=s2B. Assume now that A=s1B-A=s2B. We have to
show that it must be that s1*s2. Assume that s1(s2.
Thus, by using Eq. (4), we get that (A =s1 B).(A=s2B).

Therefore, (A=s1B)XA.(A=s2B)XA and so we get
A=s1B.A=s2B, which contradicts the original assumption
that A=s1B-A=s2B. Thus, s1*s2. K

Proposition 19. ¹he extensive regulated dilation possesses
the following properties:

A-BNA s=K-B s=K , (36)

B-DNA s=B-A s=D , (37)

(A)
x

s=B"(A s= B)
x
, (38)

(AXB) s=K.(A s=K)X(B s=K) , (39)

(AWB) s=K-(A s=K)W(B s=K) . (40)

Proof. The proofs of these properties result directly from
the extensive regulated dilation de"nition, and the
respective properties of the regulated dilaiton. K

It should be noted that equality is always obtained in
Eq. (39) when s"1.

De5nition 20. The anti-extensive regulated erosion of
A by B with a strictness of s is de"ned by

A s>B,(A s>B)WA; s3[1, dB] (41)

Since in this de"nition the result of the regulated ero-
sion is intersected with the original set, the de"ned opera-
tion is necessarily anti-extensive (for an arbitrary kernel
and strictness).

Proposition 21. ¹he extensive regulated dilation and anti-
extensive regulated erosion are dual in the same sense that
exists for the ordinary dilation and erosion:

A s=B"(A# s>Bx )# . (42)

Proof. The proof of this proposition results directly from
the duality of the regulated dilation and erosion, and the
de"nition of the extensive regulated dilation and the
anti-extensive regulated erosion. K

Proposition 22. ¹he anti-extensive regulated erosion is
increasing with respect to the strictness s:

A s1>B-A s2>B8s1)s2 . (43)

=hen s is minimal, the anti-extensive regulated erosion
results in an ordinary erosion:

A 1>B"A>B . (44)

Proof. By using Eq. (34) we get that A# =s2 Bx -A#=s1 Bx
8s2*s1. Therefore, (A#=s2 Bx )#.(A#=s1 Bx )#8s2*s1,
and so by using the duality proposition of the anti-exten-
sive regulated erosion and the extensive regulated dila-
tion we get that A>s2 B.A>s1 B8s2*s1 . The proof of
the second part of the proposition results directly from
the de"nition of the anti-extensive regulated erosion. K
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Fig. 4. Demonstration of the extensive regulated dilation and the anti-extensive regulated erosion operations. (a)}(e) The results of an
extensive regulated dilation with a strictness of 1}5, respectively, (f )}( j) the results of an anti-extensive regulated erosion with a strictness
of 1}5, respectively. The original shape and the kernel set that are used in this example are identical to those used in Fig. 3. The elements
that were removed from the original shape are marked in light gray.

Proposition 23. ¹he anti-extensive regulated erosion pos-
sesses the following properties:

A-BNA s>K-B s> K , (45)

B-DNA s>B.A s>D , (46)

(A)
x

s>B"(A s> B)
x
, (47)

(AXB) s>K.(A s>K)X(B s>K) , (48)

(AWB) s>K-(A s>K)W(B s>K) . (49)

Proof. The proofs of these properties result directly from
the anti-extensive regulated erosion de"nition, and the
respective properties of the regulated erosion. K

It should be noted that equality is always obtained in
Eq. (49) when s"1.

Fig. 4 presents an example of an extensive regulated
dilation and an anti-extensive regulated erosion opera-
tions in which the original shape and the kernel set are
identical to those used in Fig. 3. Figs. 4a}e presents the
results of an extensive regulated dilation with a strictness
of 1}5, respectively, and Figs. 4f}j presents the results of an
anti-extensive regulated erosion with a strictness of 1}5,
respectively. The elements that were removed from the
original shape are marked in these "gures in light gray.

2.5. Examples of the regulated erosion and dilation

This section presents some examples of applications of
the regulated erosion and dilation operations, and dem-

onstrates their ability to improve the results obtained by
the ordinary operations when using strictness parameter
greater than one. Fig. 5 presents the results of an ordi-
nary and a regulated dilation of a simple dashed lines
image. The original image is presented in Fig. 5a. The
result of an ordinary dilation of the image in Fig. 5a by
a line kernel in the direction of 453 is shown in Fig. 5b.
The result of a regulated dilation of the same image by
the same kernel when using a strictness parameter which
is greater than one is demonstrated in Fig. 5c. As can be
observed, both the ordinary and regulated dilation op-
erations manage to "ll the gaps in the diagonal dashed
lines. However, the regulated dilation removes the hori-
zontal dashed lines, whereas the ordinary dilation gener-
ates noise due to the dilation of these lines. A complete
description of the application of regulated morphological
operations for dashed lines reconstruction is presented in
details in Ref. [10].

An example of objects boundary smoothing by a regu-
lated dilation is presented in Fig. 6. Fig. 6a presents the
initial map image, in which the boundaries of the objects
are noisy. Figs. 6b}c demonstrates the results of an ordi-
nary dilation of the image in Fig. 6a by a 2]2 and a 3]3
square kernels, respectively. Fig. 6d shows the result of
a regulated dilation of the same image by a 3]3 square
kernel when using a strictness parameter of 4. As can be
observed, the ordinary dilation operations result in
thicker objects with noisy boundaries, whereas the regu-
lated dilation smoothes the boundary of shapes without
thickening them. As can be observed, the ordinary dila-
tion operations result in thicker objects with noisy
boundaries, whereas the regulated dilation smoothes the
boundary of shapes without thickening them.

An example of directional extraction of lines by a regu-
lated dilation operation is presented in Fig. 7. Fig. 7a
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Fig. 5. Demonstration of the ordinary and the regulated dilation of dashed lines. (a) The original image, (b) the result of an ordinary
dilation of the image in (a) by a line kernel in the direction of 453, (c) the result of a regulated dilation of the same image by the same
kernel when using a strictness parameter which is greater than one. As can be observed, both the ordinary and the regulated dilation
operations manage to "ll the gaps in the diagonal dashed lines. However, the regulated dilation removes the horizontal dashed lines,
whereas the ordinary dilation generates noise due to the dilation of these lines.

Fig. 6. Demonstration of objects boundary smoothing by a regulated dilation operation. (a) The initial map image, in which the
boundaries of the objects are noisy, (b)}(c) the results of an ordinary dilation of the image in (a) by a 2]2 and a 3]3 square kernels,
respectively, (d) the result of a regulated dilation of the same image by a 3]3 square kernel when using a strictness parameter of 4. As can
be observed, the ordinary dilation operations result in thicker objects with noisy boundaries, whereas the regulated dilation smoothes
the boundary of shapes without thickening them.

Fig. 7. Demonstration of directional extraction of lines by a regulated dilation operation. (a) The initial map image, containing one side
edges (in the lower right direction) of objects in the original image, (b) the result of an ordinary dilation of the image in (a) by a line kernel
in the direction of 203, (c) the result of a regulated dilation of the same image by the same kernel when using a strictness parameter which
is greater than one. As can be observed, the regulated dilation by a directional line kernel is capable of "ltering lines in a required
direction, whereas the ordinary dilation is only capable of thickening the lines in all the other directions.

presents the initial map image, in which there are one side
edges (in the lower right direction) of objects in the
original image. Fig. 7b demonstrates the result of an
ordinary dilation of the image in Fig. 7a by a line kernel

in the direction of 203. Fig. 7c shows the result of a regu-
lated dilation of the same image by the same kernel when
using a strictness parameter which is greater than one. As
can be observed, the regulated dilation by a directional
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line kernel is capable of "ltering lines in a required
direction, whereas the ordinary dilation is only capable
of thickening the lines in all the other directions. A com-
plete description of the application of regulated mor-
phological operations for directional decomposition of
line drawing images is presented in details in Ref. [11].

An example of separation between a character string
and a line that intersects it, is presented in Fig. 8. Fig. 8a
presents the initial map image, in which there is a rotated
character string that is intersected by a line. Fig. 8b
presents the result of line removal from the initial image
in Fig. 8a. The line is detected by using an iterative
regulated erosion operation that uses a line kernel in
the direction of the character string (203), and a strictness
which is greater than one. Fig. 8c shows the result of
a regulated erosion of the original image by using a line
kernel in a perpendicular direction (1103), and a strictness
which is greater than one. Fig. 8d presents the separated
character string obtained by the union between the re-
sults in Fig. 8b and c. As can be observed, the ability of
the regulated erosion to "lter lines in a given direction,
may be used in order to obtain the required separation.

3. Relations between regulated operations and other
operations

In this section the relations between the regulated
morphological operations and other operations are
studied. In particular the relations to the following
operations are examined: ordinary morphological opera-
tions, linear "lters, order statistic "lters, and soft mor-
phological operations.

3.1. Relations to ordinary morphological operations

As demonstrated earlier, the ordinary morphological
operations may be obtained from the regulated mor-
phological operations when using a strictness of one. In
the following propositions it is discussed how the regu-
lated morphological operations may be obtained by
a union or intersection of ordinary morphological opera-
tions.

Proposition 24. ¹he regulated erosion may be obtained by
a union of ordinary erosions:

A s>B" Z
KDfB DdD/sB L

A >D . (50)

Proof. In order to prove the proposition we show that
if an element x belongs to the regulated erosion it
must belong to the union of the ordinary erosions, and
that if it belongs to the union of the ordinary erosions
it must belong to the regulated erosion. Assume "rst

that x3A >s B. Therefore, d(A#W(B)
x
)(s, and so

d(AW(B)
x
)*s

B
. As follows that, there exists D-B for

which dD"s
B

such that d(AW(D)
x
)"dD. Therefore,

d(A#W(D)
x
)"0 and so by using Eq. (16) we get that

x3A> D. Assume now that x3Z
KDfB DdD/sBL

A >D.

Therefore there exists D-B for which dD"s
B

and
x3A> D. By using Eq. (16) we get that d(A#W
(D)

x
)"0, and so d(A#W(B)

x
))dB!dD"s!1.

Thus d(A#W(B)
x
) (s, and so by using Eq. (17) we get

that x3A >s B. K

Proposition 25. ¹he regulated dilation may be obtained by
an intersection of ordinary dilations:

A s=B" Y
KDfB DdD/sBL

A =D . (51)

Proof. By developing the left side of the proposition
based on the duality between the regulated erosion and
dilation, and using Eq. (50) we get A=s B"(A#>s Bx )#"
( Z

KDfBx DdD/sBL
A#> D )#" Y

KDfBx DdD/sBL
( A#> D )#"

Y
KDfBDdD/sBL

(A#>Dx )#"Y
KDfBDdD/sBL

A =D. K

Proposition 26. ¹he regulated erosion may be obtained by
an intersection of ordinary dilations:

A s>B" Y
KDfBDdD/sL

A =Dx . (52)

Proof. By developing the left side of the proposition
based on Eq. (31) and (51) we get A>s B"A =sBM Bx
"Y

KDfBx DdD/sL
A =D"Y

KDfBDdD/sL
A=Dx . K

Proposition 27. ¹he regulated dilation may be obtained by
a union of ordinary erosions:

A s=B" Z
KDfBDdD/sL

A >Dx . (53)

Proof. By developing the left side of the proposition
based on Eq. (30) and (50) we get A=s B"A >sBM Bx
"Z

KDfBx DdD/sL
A >D"Z

KDfBDdD/sL
A>Dx . K

3.2 Linear xltering interpretation

Given two images A,MA(k, l)NM
k, l/~M

and
B,MB(k, l)NP

k, l/~P
where P(M, the linear "ltering of

A by B is given by the linear convolution between them:
MA(k, l) *B(k, l)NM

k, l/~M
. The linear convolution between

A(k, l) and B(k, l) is de"ned by

A(k, l) *B(k, l),
P
+

m/~P

P
+

n/~P

B(m, n)A(k!m, l!n) (54)

where it is assumed that A(k, l) is zero-padded so that
A(k, l)"0 for each k, l that is not in the range [!M, M].
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Fig. 8. Demonstration of separation between a character string and an intersecting line by a regulated erosion operation. (a) The initial
image of a rotated character string which is intersected by a line, (b) the result of line removal from the initial image in (a). The line is
detected by using an iterative regulated erosion operation that uses a line kernel in the direction of the character string (203), and
a strictness which is greater than one. (c) The result of a regulated erosion of the original image by using a line kernel in a perpendicular
direction (1103), and a strictness which is greater than one. (d) The separated character string obtained by the union between the results
in (b) and (c). As can be observed, the ability of the regulated erosion to "lter lines in a given direction, may be used in order to obtain the
required separation.

De5nition 28. The respective set A of the binary image

A,MA(k, l)NM
k, l/~M

is de"ned by

A,M(k, l) Dk, l3[!M, M], A(k, l)"1N (55)

The binary image A is called the respective image of the
set A.

Lemma 29. Given two sets A, BLZ2, the cardinality of
the intersection between A and the re-ected B shifted by
(k, l) may be obtained as the value at location (k, l) of the
linear convolution between the respective images A and B:

d(AW(Bx )
(k, l)

)"A(k, l) *B(k, l) . (56)

Proof. By developing the right side of the lemma accord-
ing to the linear convolution de"nition we get
A(k, l) * B(k, l)"+P

m/~P
+P

n/~P
B(m, n)A(k!m, l!n)

"+P`k
m/~P`k

+ P`l
n/~P`l

B (!m#k , !n# l )A (m , n )
"+

(~m`k,~n`l)|B
A(m, n)"+

(m,n)|(Bx )(k,l)
A(m, n)"

d(AW(Bx )
(k, l)

). K

Proposition 30. Given two sets A, BLZ2, the regulated
dilation and erosion of A by B may be obtained by thre-
sholding the linear convolution between the respective

binary images A and B:

A s=B"M(k, l) DA(k, l) *B(k, l)*sN , (57)

A s>B"M(k, l) DA#(k, l) *Bx (k, l)(sN . (58)

Proof. Results directly from the de"nitions of the regu-
lated dilation and erosion, by using Eq. (56). K

Following the last proposition, it is possible to observe
that the non-linear nature of morphological operations is
derived by a threshold operation, where for the ordinary
morphological operations the threshold is 1, and for the
regulated morphological operations the threshold may
be higher. It should be noted that the properties in this
section are discussed for sets in Z2 in order to simplify the
transcription of indexes. These properties can be easily
extended to sets in ZN.

3.3 Relations to order-statistic xlters

The mth order statistic of a set of scalars A, is de"ned
by

OS(m)(A),mth smallest of (Ma Da3AN) . (59)
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Given a set F, it is possible to de"ne a membership
function for it by

f (x),G
1 if x3F ,

0 otherwise .
(60)

Based on the membership function f (x), it is possible to
represent the regulated dilation and erosion of the set
F by using the order statistic operation.

Proposition 31. ¹he regulated dilation of F by B with a
strictness of s may be evaluated by using an order-statistic
operation:

F s=B"Mx DOS(sB) (M f (b) Db3 (Bx )
x
N)"1N . (61)

Proof. By developing the left side of the proposition
based on the regulated dilation de"nition, we get
F s=B"Mx Dd(FW (Bx )

x
)*sN"Mx D (+

b|(Bx )x
f (b))*sN

"Mx Dsth largest of (M f (b) Db3(Bx )
x
N)"1N"Mx Ds

B
th

smallest of (M f (b) Db3(Bx )
x
N)"1N"Mx DOS(sB)(M f (b) Db

3(Bx )
x
N)"1N. K

Proposition 32. ¹he regulated erosion of F by B with a
strictness of s may be evaluated by using an order-statistic
operation:

F s>B"Mx DOS(s)(M f (b) Db3(B)
x
N)"1N . (62)

Proof. By developing the left side of the proposition
based on Eqs. (31) and (61), and using the fact that the
complement of s

B
with respect to B is s, we get that

F>s B"F =sBM Bx"Mx DOS(s)(M f (b) Db3(B)
x
N)"1N. K

As described in Ref. [6], the ordinary erosion and
dilation may be represented by using minimum and max-
imum operations, respectively. Propositions 31 and 32
demonstrate that the regulated morphological opera-
tions obtain a controlled strictness with respect to the
ordinary operations by compromising between the min-
imum and maximum operations, where such a compro-
mise results in an order-statistic operation.

3.4. Relations to soft morphological operations

The soft morphological operations are performed by
using a structuring system [B, A, r] in which A is a hard
kernel set, (BCA) is a soft kernel set, and r is an order
parameter. The symbol C is used in this context to repres-
ent the set di!erence operation. The soft morphological
dilation and erosion of the function f by the structuring

system [B, A, r] are de"ned [3] respectively by:

( f = [B, A, r]) (x)

,rth largest of (Mre f (a) Da3A
x
NXM f (b) Db3

(BCA)
x
N) (63)

( f > [B, A, r]) (x)

,rth smallest of (Mr e f (a) Da3A
x
NXM f (b) Db

3(BCA)
x
N) (64)

where in these de"nitions the symbol e represents a rep-
etition operator de"ned by

def
r times

rex,(x, 2, x).

By using the membership function f (x) of the set F as
de"ned in Eq. (60), the soft dilation and erosion of the set
F may be obtained respectively by,

F= [B, A, r],Mx D ( f = [B, A, r]) (x)"1N , (65)

F> [B, A, r],Mx D ( f > [B, A, r]) (x)"1N . (66)

It should be noted that the de"nitions of the soft dilation
and erosion do not contain a re#ection of the kernel.
Therefore, when using a non-isotropic kernel, the ap-
plication of a sequence of soft erosion-dilation or soft
dilation-erosion will generate a shift of the shapes in the
original image.

The following propositions discuss the relations be-
tween the regulated morphological operations, and the
soft morphological operations, and it is shown that the
soft morphological operations may be obtained by a com-
bination of ordinary morphological operations (that use
the hard kernel set) and regulated morphological opera-
tions (that use the soft kernel set). Therefore, it is possible
to observe that the regulated morphological operations
de"ne the nature of softness of the soft morphological
operations.

Proposition 33. ¹he soft dilation of the set F by the struc-
turing system [B, A, r] may be obtained by a union between
an ordinary dilation (that uses the hard kernel set) and
a regulated dilation (that uses the soft kernel set):

F= [B, A, r]"(F=Ax )X(F r= (Bx CAx )) (67)

Proof. Assume "rst that x3F= [B, A, r]. Examining
the de"nition of the soft dilation, it is possible to observe
that if there exists a3A

x
such that f (a)"1, the repetition

of f (a) r times causes the r th largest value in the de"ni-
tion of the soft dilation to be 1. Therefore, by using
Eq. (2), we get that x3(F=Ax ) is a su$cient condition
to satisfy: x3F= [B, A, r]. When that condition is not
satis"ed, that is f (a)"0 for all a3A

x
, the rth largest
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value in the de"nition of the soft dilation is determined
by the elements b3(Bx CAx )

x
. It follows that in that case it

must be that the number of elements b3 (Bx CAx )
x
for which

f (b)"1 is greater than or equal to r, so that the rth
largest value in the soft dilation de"nition will be 1.
Therefore, by using Eq. (3), we get that in such a case
it must be that x3(F=r (Bx CAx )). When combining this
condition with the previous condition we obtain that
x3((F=Ax )X(F=r (Bx CAx ))). In a similar way, when assum-
ing that x3 ((F=Ax )X(F=r (Bx CAx ))), it is possible to show
that it must be that x3F= [B, A, r]. K

Proposition 34. ¹he soft erosion of the set F by the struc-
turing system [B, A, r] may be obtained by an intersection
of an ordinary erosion (that uses the hard kernel set) and
a regulated erosion (that uses the soft kernel set):

F> [B, A, r]"(F>A)W(F r> (BCA)) . (68)

Proof. Assume "rst that x3F> [B, A, r]. Examining
the de"nition of the soft erosion, it is possible to observe
that if there exists a3A

x
such that f (a)"0, the repetition

of f (a) r times causes the rth smallest value in the de"ni-
tion of the soft erosion to be 0, with contradiction to the
assumption that x3F> [B, A, r]. Therefore, it must be
that f (a)"1 for all a3A

x
, and so by using Eq. (16), we

get that it must be that x3 (F>A). Since for all a3A
x
it

must be that f (a)"1, the rth smallest value in the de"ni-
tion of the soft erosion is determined by the elements
b3 (BCA)

x
. Following that, it must be that the number of

elements b3(BCA)
x

for which f (b)"0 is less than r, so
that the r-th smallest value in the soft erosion de"nition
will be 1. Therefore, by using Eq. (17), we get that it must
be true that x3(F>r (BCA)). When combining this condi-
tion with the previous condition we obtain
x3((F>A)W(F>r (BCA))). In a similar way, when assum-
ing that x3 ((F>A)W(F>r (BCA))), it is possible to show
that it must be that x3F> [B, A, r]. K

From Eqs. (67) and (68), we get that F=[B, A, r].
(F= Ax ) and F> [B, A, r]-(F> A). Therefore, it is pos-
sible to conclude that the soft part of the soft dilation
may only increase the results of the ordinary dilation
(F= Ax ), and that the soft part of the soft erosion may
only decrease the results of the ordinary erosion (F>A).

4. Compound regulated morphological operations

Idempotency of a "lter means that a basic property of
the signal is "ltered. While in general, it is di$cult to
de"ne non-linear "lters which are idempotent, it is pos-
sible to de"ne regulated open and close operations that
are idempotent by extending the "tting interpretation of
the ordinary open and close. In this section regulated

open and close operations are de"ned. The properties of
these operations are discussed, and it is shown that the
ordinary open and close operations may be obtained as
a special case of the regulated operations.

4.1. Regulated close

The regulated close is de"ned by extending the "tting
interpretation of the ordinary close. By extending the
"tting interpretation of the ordinary close, some basic
characteristics of the shape are "ltered, and so the ob-
tained regulated close is idempotent. The strictness para-
meter of the regulated close controls the strength of the
close.

De5nition 35. The regulated close of A by B with a strict-
ness of s is de"ned by

A sf B,((A s=B) >B)XA (69)

where s3[1, dB].
Since in this de"nition the result is uni"ed with the

original set, the de"ned operation is necessarily extensive
(for an arbitrary kernel and strictness).

Fig. 9 demonstrates the "tting interpretation of the
ordinary and regulated close. Figs. 9a and b presents
the original shape and the kernel set respectively, where
the black square indicates the origin of the kernel. Fig. 9c
presents the result of an ordinary close in which the
elements that are added to the closed shape are elements
that are bounded between all the possible shifts of the
re#ected kernel that do not intersect the shape. Fig. 9d
presents the result of a regulated close with a strictness of
two in which the elements that are added to the closed
shape are elements that are bounded between all the
possible shifts of the re#ected kernel for which the size of
the intersection with the shape is less than two. The
elements that were added by the close are marked in
these "gures in light gray. As can be observed, the result
obtained by the regulated close is smaller than the result
obtained by the ordinary close, since in the regulated
close the shifted kernels may penetrate deeper into the
shape, and so the area bounded between them is smaller.

Proposition 36. ¹he ordinary close is obtained from the
regulated close when s"1:

AfB"A1fB . (70)

Proof. By developing the right side of the proposition
according to the de"nition of the regulated close, and
using the facts that ordinary close is extensive, and that
A=1 B"A=B, we get: Af1B"((A=1 B)>B)XA"

((A=B) >B)XA"(Af B)XA"(AfB). K
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Fig. 9. The "tting interpretation of the ordinary and regulated close. (a) The original shape (b) the kernel set, (c) the result of an ordinary
close in which the elements that are added to the closed shape are elements that are bounded between all the possible shifts of the
re#ected kernel that do not intersect the original shape. (d) The result of a regulated close with a strictness of two in which the elements
that are added to the closed shape are elements that are bounded between all the possible shifts of the re#ected kernel for which the size
of the intersection with the original shape is less than two. The elements that were added by the close operations are marked in light gray.
As can be observed, the result obtained by the regulated close is smaller than the result obtained by the ordinary close.

Proposition 37. ¹he regulated close is decreasing with
respect to the strictness s:

A s1f B-A s2f B 8 s1*s2 . (71)

Proof. Assume "rst that s1*s2. Thus, by using Eq. (34),
we get that (A=s1 B)-(A=s2 B). Therefore ((A=s1 B) >B)X
A-((A=s2 B)>B)XA, and so A fs1B-A fs2B. Assume
now that A fs1B-A fs2B. We have to show that it must be
that s1*s2. Assume that s1(s2. Thus, by using
Eq. (34), we obtain that (A =s1 B).(A =s1 B). Therefore
((A=s1 B)>B)XA.((A=s2 B)>B)XA, and so we get

A fs1B.A fs2B, which contradicts the original assump-
tion that A fs1B-A fs2B. Hence s1*s2. K

Proposition 38. ¹he regulated close is increasing with
respect to the ,rst argument:

A-BNA sfK-B sf K; s3[1, min(dA, dK)] . (72)

Proof. Since A-B, when using the fact that the exten-
sive regulated dilation and the ordinary erosion are in-
creasing with respect to the "rst argument, we get that
(A=s K) >K-(B=s K)>K. Therefore, ((A=s K)> K)XA
-((B=s K) >K)XB, and so by using the de"nition of the
regulated close we get Afs K-Bfs K. K

Proposition 39. ¹he regulated close is translation invari-
ant:

(A)
x

sf B"(A sf B)
x
. (73)

Proof. By developing the left side of the proposition
based on the de"nition of the regulated close, and using

the fact that the extensive regulated dilation and the
ordinary erosion are translation invariant, we get:
(A)

x
fs B"(((A)

x
=s B) > B)X (A)

x
"((A =s B) > B)

x
X (A)

x
"(((A=s B) >B)XA)

x
"(Afs B)

x
. K

4.2. Regulated open

The regulated open is de"ned by extending the "tting
interpretation of the ordinary open. By extending the
"tting interpretation of the ordinary open, some basic
characteristics of the shape are "ltered, and so the ob-
tained regulated open is idempotent. The strictness para-
meter of the regulated open controls the strength of the
open.

De5nition 40. The regulated open of A by B with a strict-
ness of s is de"ned by

A ss B,((A s>B)=B)WA (74)

where s3[1, dB].
Since in this de"nition the result is intersected with the

original set, the de"ned operation is necessarily anti-
extensive (for an arbitrary kernel and strictness).

Fig. 10 demonstrates the "tting interpretation of the
ordinary and regulated open. Figs. 10a and b presents
the original shape and the kernel set respectively, where
the black square indicates the origin of the kernel. Fig. 10c
presents the result of an ordinary open in which the
elements that are removed in order to create the opened
shape are elements that are not covered by any shift of
the kernel that is contained completely within the shape.
Fig. 10d presents the result of a regulated open with
a strictness of two in which the elements that are removed
in order to create the opened shape are elements that are
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Fig. 10. The "tting interpretation of the ordinary and regulated open. (a) The original shape. (b) The kernel set. (c) The result of an
ordinary open in which the elements that are removed from the shape are elements that are not covered by any shift of the kernel that is
contained completely within the original shape. (d) The result of a regulated open with a strictness of two in which the elements that are
removed from the shape are elements that are not covered by any shift of the kernel that has at most one element common with the
background. The elements that were removed by the open operations are marked in light gray. As can be observed, the result obtained
by the regulated open is larger than the result obtained by the ordinary open.

not covered by any shift of the kernel that has less than
two elements common with the background set. The
elements that were removed by the open are marked in
these "gures in light gray. As can be observed, the result
obtained by the regulated open is larger than the result
obtained by the ordinary open, since in the regulated
open the shifted kernels may have one pixel outside the
shape, and so they cover more elements of the original
shape.

Proposition 41. ¹he ordinary open is obtained from the
regulated open when s"1:

A s B"A 1s B . (75)

Proof. By developing the right side of the proposition
according to the de"nition of the regulated open, and
using the facts that ordinary open is anti-extensive, and
that A >1 B"A> B, we get A s1 B"((A >1 B)= B)WA
"((A>B)=B)WA"(A s B)WA"(A s B). K

Proposition 42. ¹he regulated open and close are dual in
the same sense that exists for the ordinary open and close:

A sf B"(A# ss Bx )# . (76)

Proof. By developing the left side of the proposition
according to the regulated close de"nition we get Afs B"

((A=s B)>B)XA"((A#>s Bx )#>B)XA"((A#>s Bx )=Bx )#
XA"(((A# >s Bx ) =Bx )WA#)#"(A# ss Bx )#. K

Proposition 43. ¹he regulated open is increasing with
respect to the strictness s:

A s1s B-As2sB8 s1)s2 . (77)

Proof. By using Eq. (71) we get that A# fs2Bx -A# fs1Bx
8 s2*s1. Therefore, (A# fs2Bx )#.(A# fs1Bx )#8 s2*s1,

and so by using the duality proposition of the regulated
open and close we get that A ss2B.A ss1B8 s2*s1.

K

Proposition 44. ¹he regulated open is increasing with re-
spect to the ,rst argument:

A-BNA ss K-B ss K; s3[1, dK] . (78)

Proof. Since A-B it follows that A#.B#. When using
the fact that the regulated close is increasing with respect
to the "rst argument, we get that A#fs Kx .B# fs Kx . There-
fore, (A#fs Kx )#-(B#fs Kx )#, and so by using the duality
proposition between the regulated open and close, we get
A ss K-B ss K. K

Proposition 45. ¹he regulated open is translation in-
variant:

(A)
x
ss B"(A ss B)

x
. (79)

Proof. By developing the left side of the proposition
based on the de"nition of the regulated open, and using
the fact that the anti-extensive regulated erosion and the
ordinary dilation are translation invariant, we get
(A)

x
ss B"(((A)

x
>s B) =B)W(A)

x
"((A >s B)= B)

x
W (A)

x
"(((A>s B) =B)WA)

x
"(A ss B)

x
. K

Fig. 11 presents an example of regulated open
and close operations in which the original shape and
the kernel set are identical to those used in Fig. 3.
Figs 11a}e present the results of a regulated open
with a strictness of 1}5, respectively, and Figs. 11f}j
presents the results of a regulated close with a strictness
of 1}5, respectively. The elements that were removed
from the original shape are marked in these "gures in
light gray.
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Fig. 11. Demonstration of the regulated open and close operations. (a)} (e) The results of a regulated open with a strictness of 1}5,
respectively. (f)}(j) The results of a regulated close with a strictness of 1}5, respectively. The original shape and the kernel set that are
used in this example are identical to those used in Fig. 3. The elements that were removed from the original shape are marked in light
gray.

4.3. The xtting interpretation of the regulated open and close

In the beginning of Section 4 it was stated that the
regulated open and close operations extend the "tting
interpretation of the ordinary open and close operations.
The following propositions formulate the "tting inter-
pretation of the regulated open and close operations.

Proposition 46. ¹he regulated open of a shape A by a ker-
nel B with a strictness of s may be interpreted as the
intersection between the shape and the union of all the
possible shifts of the kernel for which the intersection with
the shape is big enough and the origin of the kernel is
included in the shape:

A ss B"A Z
Kx|A Dd(A#V(B)x):sL

(B)
xBWA . (80)

Proof. According to the de"nition of the anti-exten-
sive regulated erosion: A >s B"(A>s B)WA"Mx3A D
d(A#W(B)

x
)(sN. When assigning this into the def-

inition of the regulated open, and using the union inter-
pretation of the ordinary dilation we get: A ss B"

((A>s B)=B)WA"(Mx3A Dd(A#W(B)
x
)(sN=B)WA"

(Z
Kx|A Dd(A#V(B)x):sL

(B)
x
)WA. K

Based on the last proposition, the "tting interpretation
of the regulated open may be visualized as moving the
kernel inside the shape as close as possible to its borders,
where the kernel may get out of the shape up to some
extent, and then eliminating border elements that were
not covered by at least one shift of the kernel. An example
of the "tting interpretation of the regulated open was
already presented in Fig. 10.

Proposition 47. ¹he regulated close of a shape A by a ker-
nel B with a strictness of s may be interpreted as the union
of the shape and the intersection between all the possible
shifts of the re-ected and complemented kernel for which
the intersection of the re-ected kernel with the shape is
small enough and the origin of the kernel is not included in
the shape:

A sf B"A Y
Kx|A# Dd(AY(Bx )x):sL

((Bx )
x
)#BXA . (81)

Proof. By using Eq. (80) and the duality between the
regulated open and close, we get Afs B"(Ac s4 Bx )#"
((Z

Kx|A# Dd(AY(Bx )x):sL
(Bx )

x
)WA#)#"(Z

Kx|A#Dd(AY(Bx )x):sL
(Bx )

x
)#

XA"(Y
Kx|A#Dd(AY(Bx )x):sL

((Bx )
x
)#)XA. K

Based on the last proposition, the "tting interpretation
of the regulated close may be visualized as moving the
re#ected kernel outside the shape as close as possible to
its borders, where the re#ected kernel may get into the
shape up to some extent, and then adding border ele-
ments that were not covered by at least one shift of the
re#ected kernel. An example of the "tting interpretation
of the regulated close was already presented in Fig. 9.

4.4. Idempotency of the regulated open and close

In the beginning of Section 4 it was stated that the
regulated open and close operations are idempotent. The
following propositions provide a proof of that statement.

Proposition 48. ¹he extensive regulated dilation of a set is
not in-uenced by a regulated close operation that is per-
formed on the set before the extensive regulated dilation
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(with the same kernel and strictness parameter):

(A sfB) s= B"A s=B . (82)

Proof. Since the regulated close is extensive, it is possible
to construct a set D that contains all the elements that are
added to a shape during the regulated close operation:
D,(Afs B)WA#. By using the set D the regulated close
of the shape is obtained by the union: AXD. Assume
"rst that D"0, in that case Afs B"A, and so
(Afs B) =s B"A =s B. Assume now that DO0, in that
case there exists an element x3D. According to the
de"nition of D, when x3D it follows that x3Afs B and
x3A#. Since D is not empty, in order to prove the
proposition it is su$cient to show that the element x can-
not in#uence the extensive regulated dilation of A (with
the same strictness s). Consequently, it is required to
show that: (a) The element x belongs to the extensive
regulated dilation of A; (b) the presence of the element
x does not cause the addition of new elements to the
extensive regulated dilation of A.

Part (a) is proved by using the regulated close de"ni-
tion. Since x3Afs B, according to the regulated close
de"nition it follows that x3((A=s B)> B)XA. When
combining that with the fact that x3A# we get that
x3(A =s B)>B. Therefore, since the ordinary erosion is
anti-extensive, it follows that x3A =s B. Part (b) is pro-
ved by using the "tting interpretation of the regulated
close. Since x3A fs B, according to Eq. (81) it follows that
x3(Y

Ky|A#Dd(AY(Bx )y):sL
((Bx )

y
)#)XA. When combining that

with the fact that x3A# we get that x3Y
Ky|A#Dd(AY(Bx )y):sL

((Bx )
y
)#. Therefore xNZ

Ky|A#Dd(AY(Bx )y):sL
(Bx )

y
, and so for all

the possible shifts y3A# for which x3(Bx )
y
it must be that

d(AW(Bx )
y
)*s. Since any shift y3A# of the re#ected

kernel that includes x has an intersection with A with at
least s elements, it will be included in the extensive
regulated dilation of A whether the element x is present
or not. Thus, the presence of the element x does not cause
the addition of new elements to the extensive regulated
dilation of A. K

Propositon 49. ¹he anti-extensive regulated erosion of
a set is not in-uenced by a regulated open operation that is
performed on the set before the anti-extensive regulated
erosion (with the same kernel and strictness parameter):

(A ss B) s>B"A s>B . (83)

Proof. By using the duality between the regulated
open and close, and Eq. (82), we get (A ss B)>s B"

(A#fs Bx )#>s B"((A#fs Bx ) =s Bx )#"(A#=s Bx )#"A >s B. K

Proposition 50. ¹he regulated close is idempotent:

(A sf B) sf B"A sf B . (84)

Proof. By eroding both sides of Eq. (82) with B and
uniting them with A we get that (((Afs B)=s B)>B)XA"

((A=s B)>B)XA, and so by using the de"nition of the
regulated close we obtain that (((Afs B) =s B) >B)XA"

Afs B. By uniting both sides with A fs B and using the fact
that AX(Afs B)"A fs B (since the regulated close is ex-
tensive) we get that (((Afs B)=s B)>B)XAfs B"Afs B,
which according to the de"nition of the regulated close is
equivalent to (Afs B)fs B"A fs B. K

Propositon 51. ¹he regulated open is idempotent:

(A ss B) ss B"A ss B . (85)

Proof. By using the duality between the regulated
open and close, and the fact that the regulated
close is idempotent, we get (A ss B) ss B"(A#fs B)# ss B"

((A#fs B) fs B)#"(A#fs B)#"A ss B.

4.5. Examples of the regulated open and close

This section presents some examples of applications of
the regulated open and close operations, and demon-
strates their ability to improve the results obtained by the
ordinary operations when using strictness parameter
greater than one. Fig. 12 demonstrates the results of
a regulated close and open of the simple dashed lines
image, presented in Fig. 5a. Fig. 12a shows the result of
an ordinary close of the image by a line kernel in the
direction of 453. Fig. 12b and c presents the result of
a regulated close and open, respectively, of the same
image by the same line kernel when using a strictness
parameter which is greater than one. As can be observed,
the regulated close "lls the gaps between the diagonal
dashed lines without a!ecting the horizontal dashed
lines, whereas the ordinary close generates noise due to
the closing of these lines. The regulated open only re-
moves the horizontal dashed lines.

An example of objects separation by a regulated open
operation is presented in Fig. 13. Fig. 13a presents the
initial map image, containing extracted building marks,
in which some of the building marks are touching each
other. Fig. 26b demonstrates the result of an ordinary
open of the image in Fig. 26a by a 7]7 kernel. Fig. 26c
presents the result of a regulated open of the same image
by the same kernel when using a strictness parameter of
2. As can be observed, the regulated open operation
manages to separate between touching buildings without
causing signi"cant changes to their shapes, whereas the
ordinary open operation causes the removal of some
buildings and changes the shapes of others.

An example of cluttered overlay removal by a regu-
lated open operation is presented in Fig. 14. Fig. 14a
presents the initial map image, which contains a cluttered
overlay. Fig. 14b demonstrates the result of an ordinary
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Fig. 12. Demonstration of the regulated close and open of dashed lines. (a) The result of an ordinary close of the image in Fig. 5a by
a line kernel in the direction of 453. (b)}(c) The result of a regulated close and open, respectively, of the same image by the same kernel
when using a strictness parameter which is greater than one. As can be observed, the regulated close "lls the gaps between the diagonal
dashed lines without a!ecting the horizontal dashed lines, whereas the ordinary close generates noise due to the close of these lines. The
regulated open only removes the horizontal dashed lines.

Fig. 13. Demonstration of objects separation by a regulated open operation. (a) The initial map image, containing extracted building
marks, in which some of the building marks are touching each other, (b) the result of an ordinary open of the image in (a) by a 7]7
kernel, (c) the result of a regulated open of the same image by the same kernel when using a strictness parameter of 2. As can be observed,
the regulated open operation manages to separate between touching buildings without causing signi"cant changes to their shapes,
whereas the ordinary open operation causes the removal of some buildings and changes the shapes of others.

Fig. 14. Demonstration of a cluttered overlay removal by a regulated open operation. (a) The initial map image, containing a cluttered
overlay. (b) The result of an ordinary open of the image in (a) by a 4]4 kernel. The size 4 is the minimal size of a square kernel that is
capable of removing the clutter by an ordinary open operation. (c) The result of a regulated open of the same image by a 7]7 kernel
when using a strictness parameter of 25. As can be observed, the regulated open operation manages to remove most of the cluttered
overlay while keeping the other objects in the image, whereas the ordinary open removes parts of objects with the clutter.
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Fig. 15. Demonstration of lines reconstruction by a regulated close operation. (a) The initial map image, containing extracted lines of
roads, in which some parts of lines were erroneously removed due to the separation of touching character strings. (b) The result of an
ordinary close of the image in (a) by a horizontal bar kernel in the size of 3]30. (c) The result of a regulated close of the same image by
the same kernel when using a strictness parameter of 20. As can be observed, the regulated close operation manages to "ll the gaps in the
lines without causing excessive "lling, whereas the ordinary close operation causes the complete "lling of gaps between any pair of
parallel vertical lines in the image.

open of the image in Fig. 14a by a 4]4 kernel. The size
4 is the minimal size of a square kernel that is capable of
removing the clutter by an ordinary open operation.
Fig. 14c shows the result of a regulated open of the same
image by a 7]7 kernel when using a strictness parameter
of 25. As can be observed, the regulated open operation
manages to remove most of the cluttered overlay while
keeping the other objects in the image, whereas the ordi-
nary open removes parts of objects with the clutter.

An example of lines reconstruction by a regulated close
operation is presented in Fig. 15. Fig. 15a presents the
initial map image, containing extracted lines of roads, in
which some parts of lines were erroneously removed due
to the separation of touching character strings. Fig. 5b
demonstrates the result of an ordinary close of the image
in Fig. 15a by a horizontal bar kernel in the size of 3]30.
Fig. 15c presents the result of a regulated close of the
same image by the same kernel when using a strictness
parameter of 20. As can be observed, the regulated close
operation manages to "ll the gaps in the lines without
causing excessive "lling, whereas the ordinary close op-
eration causes the complete "lling of gaps between any
pair of parallel vertical lines in the image.

5. Examples of algorithms using regulated morphological
operations

By using the regulated operations in existing mor-
phological algorithms with a strictness parameter which
is greater than one, it is possible to increase their ability
to cope with noise and small intrusions or protrusions on
the boundary of shapes. Thus, given an existing mor-
phological algorithm, it is possible to try and improve the
results obtained by it by using the regulated morphologi-

cal operations instead of the ordinary morphological
operations with strictness that may be optimized accord-
ing to some optimization criteria. This section presents
some examples of regulating other morphological opera-
tions which is based on the basic regulated morpho-
logical operations. More examples to applications
of regulated morphological operations may be found in
[7, 10}12].

5.1. Morphological processing of noisy images

As was stated earlier, the regulated morphological
operations are less sensitive to noise with respect to the
ordinary morphological operations. Fig. 16 presents an
example of morphological processing of a noisy image by
using the ordinary morphological operations. Fig. 16a
presents the original image, and Fig. 16b presents the
noisy image in which 10% of the pixels of the original
image were replaced by their complement. The result of
an ordinary erosion, dilation, open, and close operations
applied to the noisy image are presented in Fig. 16c}f,
respectively. The kernel used in these operations is a 5]5
square with the origin at its center. As can be observed
these operations are very sensitive to the added noise,
and do not obtain their designated task.

Fig. 17 presents an example of morphological proces-
sing of the noisy image in Fig. 16b by using the regulated
morphological operations. The results of the regulated
erosion, regulated dilation, regulated erosion}dilation,
and regulated dilation}erosion operations applied to the
noisy image with a strictness of 7 are presented in Fig.
17a}d, respectively. The results of the anti-extensive regu-
lated erosion, extensive regulated dilation, regulated
open, and regulated close operations applied to the noisy
image with a strictness of 7 are presented in Fig. 17e}h,
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Fig. 16. Demonstration of ordinary morphological operations on a noisy image. (a) The original binary image. (b) The noisy image
obtained by replacing 10% of the pixels in the original image with their complement. (c)}(f) The results of ordinary erosion, dilation,
open, and close of the noisy image. The kernel used in these operations is a 5]5 square with the origin at its center. As can be observed
these operations are very sensitive to the added noise, and do not obtain their designated task.

Fig. 17. Demonstration of regulated morphological operations on a noisy image. (a)}(d) The results of regulated erosion, regulated
dilation, regulated erosion}dilation, and regulated dilation}erosion, of the noisy image with a strictness of 7. (e)}(h) The results of
anti-extensive regulated erosion, extensive regulated dilation, regulated open, and regulated close of the noisy image with a strictness of
7. The original image is presented in Fig. 16b. The kernel used in these operations is a 5]5 square with the origin at its center. As can be
observed the regulated erosion and dilation operations perform their designated task while suppressing the added noise, whereas the
extensive regulated dilation and the anti-extensive regulated erosion perform their designated task without suppressing the added noise.
A similar observation exists for the regulated erosion-dilation, regulated dilation-erosion and the regulated open and close operations.
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Fig. 18. Demonstration of a regulated hit-or-miss transform. (a) The original image, (b) the result of an ordinary hit-or-miss transform,
(c) The result of a regulated hit-or-miss transform with a strictness of (50, 50). As can be observed the regulated hit-or-miss transform
detects more objects than the ordinary hit-or-miss transform.

respectively. The kernel used in these operations is a 5]5
square with the origin at its center. As can be observed, the
regulated erosion and dilation operations perform their
designated task while suppressing the added noise, where-
as the extensive regulated dilation and the anti-extensive
regulated erosion perform their designated task without
suppressing the added noise. A similar observation exists
for the regulated erosion}dilation, regulated dilation}ero-
sion and the regulated open and close operations.

5.2. Regulated hit-or-miss transform

The ordinary hit-or-miss transform [13] "nds shifts of
the kernel for which the kernel is contained completely
within the shape, and its background set does not inter-
sect the shape. A shift for which the kernel and the
background sets "t in the shape and its background,
respectively, is called a hit. A shift which is not a hit is
called a miss. The ability of the regulated morphological
operations to cope with noise and small intrusions or
protrusions on the boundary of shapes may be used in
order to de"ne a regulated hit-or-miss transform which
can enable intermediate levels between the two extreme
situations of hit or miss.

De5nition 52. The regulated hit-or-miss transform of
A by (B

1
, B

2
) with a strictness of (s1, s2) is de"ned by

A(s1, s2)L* (B
1
, B

2
),(A s1>B

1
)W(A#

s2>B
2
) (86)

where B
1

is the kernel set, B
2

is the background set, and
s1 and s2 are the strictness parameters used for the kernel
and background sets, respectively.

It should be noted that the second term in the de"ni-
tion uses the regulated erosion rather than the anti-
extensive regulated erosion since the usage of the anti-
extensive regulated erosion would force intersection with

A# in addition to an intersection with A thus resulting in
an empty set.

There is a need for two strictness parameters in the
regulated hit-or-miss transform since in general the car-
dinality of the kernel and the background sets may be
di!erent. When the origin is included in B

1
, the ordinary

hit-or-miss transform is obtained from the regulated hit-
or-miss transform by using a strictness of (1, 1). When
using strictness parameters which are greater than one,
imperfect hits are enabled. The regulated hit-or-miss
transform may be also evaluated by

A(s1, s2)L* (B
1
, B

2
),(A s1>B

1
)!(A s2=Bx

2
) (87)

where the operator ! represents set di!erence. Fig. 18
presents an example of using the regulated hit-or-miss
transform for a simple template matching. Fig. 18a pres-
ents the original image, Fig. 18b presents the result of an
ordinary hit-or-miss transform, and Fig. 18c presents the
result of a regulated hit-or-miss transform with a strict-
ness of (50, 50). The kernel that was used for these trans-
forms is the shape in Fig. 18b. The background set was
obtained by dilating the kernel set with a 5]5 square
(with the origin at its center) and then removing elements
that belong to the kernel set from the resulting set. In
order to obtain a better presentation of the results in
Fig. 18b and c, the results of the hit-or-miss transforms
were dilated by the kernel set and a 3]3 square (with the
origin at its center), and then intersected with the original
image. As can be observed the regulated hit-or-miss
transform detects more objects than the ordinary hit-or-
miss transform which detects only the one object that is
identical to the kernel set.

5.3. Regulated skeletonizing operation

The ordinary skeletonizing operation [13] is based
on an iterative operation where in each iteration the
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Fig. 19. Demonstration of a regulated skeletonizing operation. (a) The original image, (b) The result of an ordinary skeletonizing
operation, (c)}(d) The results of a regulated skeletonizing operation with a strictness of 2}3, respectively. As can be observed the
regulated skeletonizing operations result in a more connected skeleton.

elements that are added to the skeleton of a shape are
elements that are not covered by any shift of the kernel
that is contained completely within the shape. At the end
of each iteration the shape is eroded and the process
continues until an empty set is obtained.

De5nition 53. The regulated skeletonizing operation of
A by B with a strictness of s is de"ned by

S
s
(A),

K
Z
k/0

(A s> kB)!((A s> kB) s B) (88)

where A >s kB represents k successive erosions of A by
B with a strictness of s, the operator } represents set
di!erence, and K"maxMk D(A>s kB)O0N.

Since when using high strictness values there could be
a situation in which the shape is not eroded, an addi-
tional condition is introduced for stopping the iterations.
The additional condition requires that a change must
occur in the shape during each iteration.

The ordinary skeletonizing operation is obtained from
the regulated skeletonizing operation when using a strict-
ness of 1. By using a strictness parameter which is greater
than one the number of shape elements that are removed
at each iteration is reduced, and so a "ner progress of the
process is obtained. An alternative way to regulate the
ordinary skeletonizing operation may be obtained by
exchanging the ordinary open operation in Eq. (88) with
a regulated open operation. In such a case, when using
a strictness parameter which is greater than one, it is
possible to cover more elements in the shape by the
kernel. Therefore, fewer skeleton elements are found
during each iteration, and the resulting skeleton is less
connected.

Fig. 19 presents the results of a regulated skeletonizing
operation. Fig. 19a presents the original image, Fig. 19b
presents the result of an ordinary skeletonizing opera-
tion, and Figs. 19c and d presents the results of a regu-
lated skeletonizing operation with strictness parameters
of two and three respectively. The kernel used in these
operations is a 3]3 square with the origin at its center.

As can be observed the regulated skeletonizing opera-
tions result in a more connected skeleton.

5.4. Regulated thinning and thickening operations

The ordinary thinning operation [13] of a set is based
on a hit-or-miss transform that is used in order to remove
elements from the set. The thinning of a shape is obtained
by an iterative process in which during each iteration
a sequence of thinning operations is performed by using
a sequence of kernels that are designed to remove bound-
ary elements from the shape. In order to get a symmetri-
cal thinning of the shape, the sequence of kernels that is
used during each iteration is normally composed by
a sequence of rotations of a directional kernel. The iter-
ative process continues until no further change occurs in
the shape.

De5nition 54. The regulated thinning operation of A by
(B

1
, B

2
) with a strictness of (s1, s2) is de"ned by

A(s1, s2)? (B
1
, B

2
),A!(A(s1,s2)L* (B

1
, B

2
)) (89)

where the operator } represents set di!erence, B
1

is the
kernel set, B

2
is the background set, and s1 and s2 are the

strictness parameters used for the kernel and background
sets respectively.

De5nition 55. The regulated thinning operation of A by
a set of N kernels M(Bn

1
, Bn

2
)N with a strictness of (s1, s2) is

de"ned by

A(s1, s2)? M(Bn
1
, Bn

2
)N

,((2((A(s1,s2)? (B1
1
, B1

2
))(s1,s2)? (B2

1
, B2

2
))2(s1,s2)? (BN

1
, BN

2
)).

(90)

A regulated thinning of a shape is obtained by ap-
plying the regulated thinning operation that uses a set of
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Fig. 20. Demonstration of a regulated thinning operation. (a) The original image. (b) The result of an ordinary thinning operation.
(c)}(d) The results of a regulated thinning operation with a strictness of (2, 1) and (3, 1) respectively. As can be observed the result of the
regulated thinning operation with a strictness of (2, 1) is cleaner with respect to the ordinary thinning operation, whereas the result of the
regulated thinning operation with a strictness of (3, 1) extracts only key points in the shape.

Fig. 21. Demonstration of a regulated thickening operation. (a) The original image, (b) the result of an ordinary thickening operation,
(c)}(d) the results of a regulated thickening operation with a strictness of (3, 1) and (3, 2), respectively. As can be observed, it is possible to
obtain smother results by using the regulated thickening operation with strictness parameters which are larger than (1, 1).

kernels iteratively, where the kernels are designed to
remove edge elements of the shape. The ordinary thin-
ning operation is obtained from the regulated thinning
operation when using a strictness of 1. By using a strict-
ness parameter which is greater than one the hit-or-miss
operation that is used by the thinning operation becomes
less strict, and so the obtained results become less in-
#uenced by small intrusions or protrusions on the
boundary of the shape.

Fig. 20 presents the results of a regulated thinning
operation. Fig. 20a presents the original image, Fig. 20b
presents the result of an ordinary thinning operation, and
Fig. 20c}d presents the results of a regulated thinning
operation with strictness parameters of (2, 1) and (3, 1),
respectively. A set of four kernels (Bn

1
, Bn

2
) was used in this

example, where (B1
1
, B1

2
) is given by: (B1

1
, B1

2
)"

(M(0, 0), (1, !1), (1, 0), (1, 1)N, M(!1, !1), (!1, 0),
(!1, 1)N), and (B2

1
, B2

2
) } (B4

1
, B4

2
) are obtained as rota-

tions of (B1
1
, B1

2
) in 903, 1803, and 2703, respectively. As

can be observed the result of the regulated thinning
operation with a strictness of (2, 1) is cleaner with respect
to the ordinary thinning operation, whereas the result of
the regulated thinning operation with a strictness of (3, 1)
extracts only key points in the shape.

The ordinary thickening operation [13] of a set may be
obtained by thinning its complement, and taking the

complement of the obtained result. The regulated thick-
ening operation may be obtained in a similar way.

De5nition 56. The regulated thickening operation of
A by (B

1
, B

2
) with a strictness of (s1, s2) is de"ned by

A(s1, s2)@ (B
1
, B

2
),(A#

(s1,s2)? (B
1
, B

2
))# (91)

where B
1

is the kernel set, B
2

is the background set, and
s1 and s2 are the strictness parameters used for the kernel
and background sets, respectively.

The regulated thickening operation of A by a set of
N kernels M(Bn

1
, Bn

2
)N with a strictness of (s1, s2) is de"ned

similar to Eq. (90).
Fig. 21 presents the results of a regulated thickening

operation. Fig. 21a presents the original image, Fig. 21b
presents the result of an ordinary thickening operation,
and Fig. 21c and d presents the results of a regulated
thickening operation with strictness parameters of (3, 1)
and (3, 2), respectively. The set of kernels that is used to
obtain the results in this example is identical to the set
which was described for the demonstration of the regu-
lated thinning operation in Fig. 20. As can be observed,
it is possible to obtain smother results by using the
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regulated thickening operation with strictness para-
meters which are larger than (1, 1).

6. Summary

This paper describes the problem of sensitivity of the
ordinary morphological operations to noise and small
intrusions or protrusions on the boundary of shapes.
This problem is derived by the strict approach taken by
the ordinary morphological operations, and so in order
to solve the problem, regulated erosion and dilation are
de"ned by extending the "tting interpretation of the
ordinary operations. The regulated erosion and dilation
have a controllable strictness parameter, which when set
to its lowest value, obtains the ordinary erosion and
dilation. The relations between the regulated erosion and
dilation are studied, and it is shown that these operations
may be obtained from each other. The relations between
the regulated operations and some other non-linear op-
erations, such as order-statistic "lters and soft mor-
phological operations, are described, and it is shown that
the regulated operations may have a thresholded linear
"ltering interpretation.

Based on the basic regulated operations, an anti-exten-
sive regulated erosion and an extensive regulated dilation
are de"ned, and their properties are studied. These op-
erations possess the strictness property of the regulated
erosion and dilation operations. Based on the anti-exten-
sive regulated erosion and the extensive regulated dila-
tion, regulated open and close operations are de"ned, by
extending the "tting interpretation of the ordinary open
and close. The properties of the regulated open and close
are described, and it is shown that they are idempotent.
Since the regulated morphological operations possess
many of the properties of the ordinary morphological
operations, given an existing morphological algorithm, it
is possible to try and improve the results obtained by it
by using the regulated operations instead of the ordinary
operations with strictness that may be optimized accord-
ing to some optimization criteria. The paper contains
many examples of the proposed approach, that demon-
strate the advantages obtained by using the regulated
operations. An e$cient implementation of the regulated
morphological operations, which is based on directional
interval coding, is described in Ref. [14].

Finally, it should be noted that even though this paper
discusses binary morphological operations, it is possible
to extend the proposed binary operations to gray-scale
operations, by using the fact that the proposed binary
operations are increasing with respect to the "rst argu-
ment. By using this fact, it is possible to compose the

gray-scale equivalents of the binary operations by pro-
cessing thresholded sections of the gray-scale image by
the binary operations, and then stacking the processed
sections in order to obtain the gray-scale result [15].
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